[Conformational changes of spin-labeled native and modified phosphorylase B].

1980 
The phosphorylase B labelled with 2,2,6,6-tetramethyl-piperidine-1-oxyl-4-iodacetamide (phosphorylase I) and with 2,2,6,6-tetramethyl-piperidine-1-oxyl-4-ethylmaleinimide (phosphorylase II) was studied. It was shown that label I is characterized by a greater mobility with respect to the protein as compared to label II. In spin-labelled preparations of phosphorylase B the 1,5--2,0 SH-groups of the enzyme monomer having no effect on the enzyme activity were modified. The effects of AMP, glucose-1-phosphate and glucose-6-phosphate on the EPR spectrum of phosphorylase I were studied. The greatest changes in the spectrum (especially in the high field line) were found to occur in the presence of glucose-6-phosphate. These changes are due to the increase in the degree of anisotropic spin rotation. The experimental and theoretical spectra allowing to determine the correlation time for the protein moiety (tau b = 160 ns) were shown to be similar. The local conformation changes were found to occur in the vicinity of one of the two label-bound SH-groups of phosphorylase I. The EPR spectra demonstrate the S-shaped dependence of mobility of phosphorylase I label on concentration of glucose-6-phosphate (0,1--10 mM). In the presence of AMP no S-shaped dependence is observed. Reduced NaBH4 phosphorylase I does not reveal the S-shaped dependence of the label mobility on concentration of glucose-6-phosphate. The degree of the label immobilization in the apo-phosphorylase I--pyridoxal-5-chloromethylphosphonate complex in the presence of glucose-6-phosphate and AMP is the same as in cholophosphorylase I; however, in contrast to the choloenzyme it does not depend on glucose-6-phosphate (0,1--10,0 mM). The changes in the mobility of the spin label of apophosphorylase I and its complex with the AMP analog--adenosine-5'-chloromethylphosphonate--during the choloenzyme reconstruction by pyridoxalphosphate are indicative of participation of AMP and the phosphate group of AMP in the formation of the enzyme active center.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []