Tilted dipole model for bias-dependent photoluminescence pattern

2014 
In a guest-host system containing elongated dyes and a nematic liquid crystal, both molecules are aligned to each other. An external bias tilts these molecules and the radiation pattern of the system is altered. A model is proposed to describe this bias-dependent photoluminescence patterns. It divides the liquid crystal/dye layer into sub-layers that contain electric dipoles with specific tilt angles. Each sub-layer emits linearly polarized light. Its radiation pattern is toroidal and is determined by the tilt angle. Its intensity is assumed to be proportional to the power of excitation light absorbed by the sub-layer. This is calculated by the Lambert-Beer's Law. The absorption coefficient is assumed to be proportional to the cross-section of the tilted dipole moment, in analogy to the ellipsoid of refractive index, to evaluate the cross-section for each polarized component of the excitation light. Contributions from all the sub-layers are added to give a final expression for the radiation pattern. Self-...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    6
    Citations
    NaN
    KQI
    []