Changes in above- and belowground biomass in early successional tropical secondary forests after shifting cultivation in Sarawak, Malaysia

2010 
Abstract Uncertainties in the rate of biomass variation with forest ageing in tropical secondary forests, particularly in belowground components, limit the accuracy of carbon pool estimates in tropical regions. We monitored changes in above- and belowground biomass, leaf area index (LAI), and biomass allocation to the leaf component to determine the variation in carbon accumulation rate with forest age after shifting cultivation in Sarawak, Malaysia. Nine plots in a 4-year-old forest and fourteen plots in a 10-year-old forest were monitored for 5 and 7 years, respectively. Forest and plant part biomass were calculated from an allometric equation obtained from the same forest stands. Both above- and belowground biomass increased rapidly during the initial decade after abandonment. In contrast, a much slower rate of biomass accumulation was observed after the initial decade. LAI also increased by approximately double from the 4-year-old to 10-year-old forest, and then gently increased to the 17-year-old forest. We also found that allocation variation in leaf biomass and nitrogen was closely related to the rate of biomass accumulation as a forest aged. During the first decade after abandonment, a high biomass and nitrogen allocation to the leaf component may have allowed for a high rate of biomass accumulation. However, reduction in those allocations to leaf component after the initial decade may have helped to suppress the biomass accumulation rate in older secondary forests. Roots accounted for 14.0–16.1% of total biomass in the 4–17-year-old abandoned secondary forests. We also verified the model predicted values for belowground biomass by Cairns et al. (1997) and Mokany et al. (2006) , although both models overestimated the values throughout our data sets by 45–50% in the 10-year-old forest. The low root:shoot ratio in the secondary forests may have caused this overestimation. Therefore, our results suggest that we should modify the models to estimate belowground biomass considering the low root:shoot ratio in tropical secondary forests.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    63
    Citations
    NaN
    KQI
    []