Restricted Boltzmann Machines for Gender Classification

2014 
This paper deals with automatic feature learning using a generative model called Restricted Boltzmann Machine (RBM) for the problem of gender recognition in face images. The RBM is presented together with some practical learning tricks to improve the learning capabilities and speedup the training process. The performance of the features obtained is compared against several linear methods using the same dataset and the same evaluation protocol. The results show a classification accuracy improvement compared with classical linear projection methods. Moreover, in order to increase even more the classification accuracy, we have run some experiments where an SVM is fed with the non-linear mapping obtained by the RBM in a tandem configuration.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    1
    Citations
    NaN
    KQI
    []