Entropy of Thermal CFTs on Curved Backgrounds

2020 
We use holography in order to study the entropy of thermal CFTs on (1+1)-dimensional curved backgrounds that contain horizons. Starting from the metric of the BTZ black hole, we perform explicit coordinate transformations that set the boundary metric in de Sitter or black-hole form. For a de Sitter boundary, the dual picture describes a CFT at a temperature different from that of the cosmological horizon. We determine minimal surfaces that allow us to compute the entanglement entropy of a boundary region, as well as the temperature affecting the energy associated with a probe quark on the boundary. For an entangling surface that coincides with the horizon, we study the relation between entanglement and gravitational entropy through an appropriate definition of the effective Newton's constant. We find that the leading contribution to the entropy is proportional to the horizon area, with a coefficient that accounts for the degrees of freedom of a CFT thermalized above the horizon temperature. We demonstrate the universality of our findings by considering the most general metric in a (2+1)-dimensional AdS bulk containing a non-rotating black hole and a static boundary with horizons.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    0
    Citations
    NaN
    KQI
    []