A New Generation of Adsorbent Materials for Entrapping and Immobilizing Highly Mobile Radionuclides

2012 
The United States is now re-assessing its nuclear waste disposal policy and re-evaluating the option of moving away from the current once-through open fuel cycle to a closed fuel cycle. In a closed fuel cycle, used fuels will be reprocessed and useful components such as uranium or transuranics will be recovered for reuse (e.g., Bodansky, 2006). During this process, a variety of waste streams will be generated (NEA, 2006; Gombert, 2007). Immobilizing these waste streams into appropriate waste forms for either interim storage or long-term disposal is technically challenging (Peters and Ewing, 2007; Gombert, 2007). Highly volatile or soluble radionuclides such as iodine (129I) and technetium (99Tc) are particularly problematic, because both have long half-lives and can exist as gaseous or anionic species that are highly soluble and poorly sorbed by natural materials (Wang et al., 2003; Wang and Gao, 2006; Wang et al., 2007). Waste forms are probably the only engineered barrier to limit their release into a human-accessible environment after disposal. In addition, during the fuel reprocessing, a major fraction of volatile radionuclides will enter the gas phase and must be captured in the off-gas treatment. It is thus highly desirable to develop a material that can effectively capture these radionuclides and then be converted into a durable waste form.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    4
    Citations
    NaN
    KQI
    []