Polymorphism of feldspars above 10 GPa.

2020 
Feldspars are rock-forming minerals that make up most of the Earth’s crust. Along the mantle geotherm, feldspars are stable at pressures up to 3 GPa and may persist metastably at higher pressures under cold conditions. Previous structural studies of feldspars are limited to ~10 GPa, and have shown that the dominant mechanism of pressure-induced deformation is the tilting of AlO4 and SiO4 tetrahedra in a tetrahedral framework. Herein, based on results of in situ single-crystal X-ray diffraction studies up to 27 GPa, we report the discovery of new high-pressure polymorphs of the feldspars anorthite (CaSi2Al2O8), albite (NaAlSi3O8), and microcline (KAlSi3O8). The phase transitions are induced by severe tetrahedral distortions, resulting in an increase in the Al and/or Si coordination number. High-pressure phases derived from feldspars could persist at depths corresponding to the Earth upper mantle and could possibly influence the dynamics and fate of cold subducting slabs. Feldspars are stable at pressures up to 3 GPa along the mantle geotherm, but they can persist metastably at higher pressures at colder conditions. Here, above 10 GPa the authors find  new high-pressure polymorphs of feldspars that could persist at depths corresponding to the Earth’s upper mantle, potentially influencing the dynamics and fate of cold subducting slabs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    80
    References
    15
    Citations
    NaN
    KQI
    []