Memory-Based Event-Triggering Hinfinity Load Frequency Control for Power Systems Under Deception Attacks.

2020 
This article proposes a memory-based event-triggering Hinfinity load frequency control (LFC) method for power systems through a bandwidth-constrained open network. To overcome the bandwidth constraint, a memory-based event-triggered scheme (METS) is first proposed to reduce the number of transmitted packets. Compared with the existing memoryless event-triggered schemes, the proposed METS has the advantage to utilize series of the latest released signals. To deal with the random deception attacks induced by open networks, a networked power system model is well established, which couples the effects of METS and random deception attacks in a unified framework. Then, a sufficient stabilization criterion is derived to obtain the memory Hinfinity LFC controller gains and event-triggered parameters simultaneously. Compared with existing memoryless LFC, the control performance is greatly improved since the latest released dynamic information is well utilized. Finally, an illustrative example is used to show the effectiveness of the proposed method.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    70
    Citations
    NaN
    KQI
    []