K63 ubiquitylation triggers proteasomal degradation by seeding branched ubiquitin chains

2018 
Different polyubiquitin chain linkages direct substrates toward distinct cellular pathways. K63-linked ubiquitylation is known to regulate proteasome-independent events such as signal transduction, but its function in the context of heterogeneous ubiquitin chains remains unclear. Here, we report that K63 ubiquitylation plays a critical role in proteasome-mediated substrate degradation by serving as a “seed” for K48/K63 branched ubiquitin chains. Quantitative analysis revealed that K48/K63 branched linkages preferentially associate with proteasomes in cells. We found that ITCH-dependent K63 ubiquitylation of the proapoptotic regulator TXNIP triggered subsequent assembly of K48/K63 branched chains by recruiting ubiquitin-interacting ligases such as UBR5, leading to TXNIP degradation. These results reveal a role for K63 chains as a substrate-specific mark for proteasomal degradation involved in regulating cell fate. Our findings provide insight into how cellular interpretation of the ubiquitin code is altered by combinations of ubiquitin linkages.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    111
    Citations
    NaN
    KQI
    []