Enhanced catalytic properties from platinum nanodots covered carbon nanotubes for proton-exchange membrane fuel cells

2010 
Abstract An efficient fabrication method for carbon nanotube (CNT)-based electrode with a nanosized Pt catalyst is developed for high efficiency proton-exchange membrane fuel cells (PEMFC). The integrated Pt/CNT layer is prepared by in situ growth of a CNT layer on carbon paper and subsequent direct sputter-deposition of the Pt catalyst. Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrate that this Pt/CNT layer consists of a highly porous CNT layer covered by well-dispersed Pt nanodots with a narrow size distribution. Compared with conventional gas-diffusion layer assisted electrodes, the CNT-based electrode with a Pt/CNT layer acting as a combined gas-diffusion layer and catalyst layer shows pronounced improvement in polarization tests. A high maximum power density of 595 mW cm −2 is observed for a low Pt loading of 0.04 mg cm −2 at the cathode.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    42
    Citations
    NaN
    KQI
    []