Reactivity mapping of luminescence in space: Insights into heterogeneous electrochemiluminescence bioassays

2020 
Abstract Electrochemiluminescence (ECL) is a powerful (bio)analytical method based on an optical readout. It is successfully applied in the heterogeneous format for immunoassays and imaging using the model and most widely used ECL system, which consists of the immobilized [Ru(bpy)3]2+ label with tripropylamine (TPA) as a coreactant. However, a major drawback is the significant decrease of the ECL intensity over time. Herein, to decipher the process responsible for this progressive loss of ECL signal, we investigated its electrochemical and photophysical properties by mapping the luminescence reactivity at the level of single micrometric beads. Polystyrene beads were functionalized by the [Ru(bpy)3]2+ dye via a sandwich immunoassay or a peptide bond. ECL emission was generated in presence of the very efficient TPA coreactant. Imaging both photoluminescence and ECL reactivities of different regions (located near or far from the electrode surface) of a [Ru(bpy)3]2+-decorated bead allows us to demonstrate the remarkable photophysical stability of the ECL label, even in presence of the very reactive electrogenerated TPA radicals. We show that the ECL vanishing correlates directly with the lower TPA oxidation current. Finally, we propose a simple electrochemical treatment, which allows to regenerate the electrode surface and thus to recover several times the strong initial ECL signal. The reactivity imaging approach provides insights into the ECL mechanism and the main factors governing the stability of the emission, which should find promising ECL applications in bioassays and microscopy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    13
    Citations
    NaN
    KQI
    []