Improvement of low-level light imaging performance using optical clearing method
2004
Abstract Low-level light-emitting imaging technique often detects the light emerged at the tissue surface that is generated internally from a specific target. However, in most cases, the high scattering nature of biological tissue limits the sensitivity and spatial resolution of this imaging modality. In this paper, we report that a significant improvement of chemiluminescence (CL) imaging performance in terms of both sensitivity and spatial resolution can be achieved by use of the topical application of glycerol solution onto tissue sample, i.e. optical clearing approach. Monte Carlo (MC) simulation of internally-launched point source shows that the decrease of scattering coefficient of turbid medium, which can be achieved by optical tissue clearing approach, causes stronger peak intensity with a narrower full-width at half-maximum (FWHM). The improvement becomes more significant with the source depth increasing from 1 to 5 mm. The experimental results shows that tissue clearing with 50% glycerol solution could largely improve the brightness and the spatial resolution of CL imaging when the target is covered by biological tissue with a thickness of either 1 or 3 mm. This method could have potential applications for the in vivo low-level light imaging techniques.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
28
References
12
Citations
NaN
KQI