Knowledge Driven Orbit-to-Ground Teleoperation of a Robot Coworker

2019 
The crewed exploration of Moon and Mars requires the construction and maintenance of infrastructure on the alien surfaces before a crew arrives. Robotic coworkers are envisioned to take over the physical labor required to set-up crew habitats, energy supplies, and return vehicles in the hazardous environment. Deploying these robots in such a remote location poses a challenge that requires autonomous robot capabilities in combination with effective Human Robot Interfaces (HRIs) , which comply with the harsh conditions of deep space operations. An astronaut-robot teleoperation concept targeting these topics has been evaluated in DLR and ESA's METERON SUPVIS Justin experiment where astronauts on-board the International Space Station (ISS) commanded DLR's humanoid robot Rollin’ Justin in a simulated Martian environment on Earth. This work extends on our previously presented approach to supervised autonomy. It examines the results of the two follow-up experiment sessions which investigated maintenance and assembly tasks in real-world scenarios. We discuss the use of our system in real space-to-ground deployment and analyze key performance metrics of the HRI and the feedback given by the astronauts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    9
    Citations
    NaN
    KQI
    []