Targeting PP2A with lomitapide suppresses colorectal tumorigenesis through the activation of AMPK/Beclin1-mediated autophagy.

2021 
Colorectal cancer (CRC) is one of the most common malignancies worldwide, and effective therapy remains a challenge. In this study, we take advantage of a drug repurposing strategy to screen small molecules with novel anticancer activities in a small-molecule library consisting of 1056 FDA-approved drugs. We show, for the first time, that lomitapide, a lipid-lowering agent, exhibits antitumor properties in vitro and in vivo. Activated autophagy is characterized as a key biological process in lomitapide-induced CRC repression. Mechanistically, lomitapide stimulated mitochondrial dysfunction-mediated AMPK activation, resulting in increased AMPK phosphorylation and enhanced Beclin1/Atg14/Vps34 interactions, provoking autophagy induction. Autophagy inhibition or AMPK silencing significantly abrogated lomitapide-induced cell death, indicating the significance of AMPK-regulated autophagy in the antitumor activities of lomitapide. More importantly, PP2A was identified as a direct target of lomitapide by limited proteolysis-mass spectrometry (LiP-SMap), and the bioactivity of lomitapide was attenuated in PP2A-deficient cells, suggesting that the anticancer effect of lomitapide occurs in a PP2A-dependent manner. Taken together, the results of the study reveal that lomitapide can be repositioned as a potential therapeutic drug for CRC treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    1
    Citations
    NaN
    KQI
    []