Neuromorphic Computing with Phase Change, Device Reliability, and Variability Challenges

2020 
Neuromorphic computing with analog memory can accelerate deep neural networks (DNNs) by enabling multiply-accumulate (MAC) operations to occur within memory. Analog memory, however, presents a number of device-level challenges having macro-implications on the achievable accuracy and reliability of these artificial neural networks. This paper focuses on the adverse effects of conductance drift in phase-change memory (PCM) on network reliability. It is shown that conductance drift can be effectively compensated in a variety of networks by applying a ‘slope correction’ technique to the squashing functions to maintain accuracy/reliability for a period of ~1 year. In addition to conductance drift, PCM poses considerable variability challenges, which impact the accuracy of the initial t 0 weights. This paper summarizes recent advances in optimizing t 0 weight programming, and provides evidence suggesting that the combination of ‘slope correction’ and programming optimization techniques may allow DNN acceleration using analog memory while maintaining software-equivalent accuracy with reasonable reliability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    2
    Citations
    NaN
    KQI
    []