Generation of heritable germline mutations in the jewel wasp Nasonia vitripennis using CRISPR/Cas9

2017 
The revolutionary RNA-guided endonuclease CRISPR/Cas9 system has proven to be a powerful tool for gene editing in a plethora of organisms. Here, utilizing this system we developed an efficient protocol for the generation of heritable germline mutations in the parasitoid jewel wasp, Nasonia vitripennis, a rising insect model organism for the study of evolution, development of axis pattern formation, venom production, haplo-diploid sex determination, and host–symbiont interactions. To establish CRISPR-directed gene editing in N. vitripennis, we targeted a conserved eye pigmentation gene cinnabar, generating several independent heritable germline mutations in this gene. Briefly, to generate these mutants, we developed a protocol to efficiently collect N. vitripennis eggs from a parasitized flesh fly pupa, Sarcophaga bullata, inject these eggs with Cas9/guide RNA mixtures, and transfer injected eggs back into the host to continue development. We also describe a flow for screening mutants and establishing stable mutant strains through genetic crosses. Overall, our results demonstrate that the CRISPR/Cas9 system is a powerful tool for genome manipulation in N. vitripennis, with strong potential for expansion to target critical genes, thus allowing for the investigation of several important biological phenomena in this organism.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    16
    Citations
    NaN
    KQI
    []