Peripheral blood mononuclear cells preferentially activate 11-oxygenated androgens
2020
Context: Androgens are important modulators of immune cell function impacting proliferation, differentiation and cytokine production. The local generation of active androgens from circulating androgen precursors is an important mediator of androgen action in peripheral androgen target cells or tissue. Objective: To characterize the activation of classic and 11-oxygenated androgens in human peripheral blood mononuclear cells (PBMCs). Methods: PBMCs were isolated from healthy male donors and incubated ex vivo with precursors and active androgens of the classic and 11-oxygenated androgen pathways. Steroids were quantified by liquid chromatography-tandem mass spectrometry. The expression of genes encoding steroid-metabolizing enzymes was assessed by quantitative PCR. Results: PBMCs generated 8-fold higher amounts of the active 11-oxygenated androgen 11-ketotestosterone than the classic androgen testosterone from their respective precursors. We identified the enzyme AKR1C3 as the major reductive 17β-hydroxysteroid dehydrogenase in PBMCs responsible for both conversions and found that within the PBMC compartment natural killer cells are the major site of AKRC13 expression and activity. Steroid 5α-reductase type 1 catalyzed the 5α-reduction of classic but not 11-oxygenated androgens in PBMCs. Lag time prior to the separation of cellular components from whole blood increased 11KT serum concentrations in a time-dependent fashion, with significant increases detected from two hours after blood collection. Conclusions: 11-oxygenated androgens are the preferred substrates for androgen activation by AKR1C3 in PBMCs, primarily conveyed by natural killer cell AKR1C3 activity, yielding 11KT the major active androgen in PBMCs. Androgen metabolism by PBMCs can affect the measurement results of serum 11-ketotestosterone concentrations, if samples are not separated in a timely fashion.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
30
References
0
Citations
NaN
KQI