Molecular Mechanism of the Cytosine CRISPR Base Editing Process and the Roles of Translesion DNA Polymerases.

2021 
CRISPR-mediated base editing causes damage to DNA, mainly uracil, apurinic/apyrimidinic (AP) sites, and nicks, which require various DNA repair mechanisms to complete the base conversion process. Currently, there are only hypotheses explaining the base editing process, but the molecular mechanism and roles of the repair systems in the process are relatively unknown. To explore the mechanism of base editing repair, a base editor, nCas9-PmCDA1, was applied in the model eukaryote, Saccharomyces cerevisiae, either with the wild type or its derivatives with genes encoding translesion DNA synthesis (TLS) polymerases knocked out. We found that C-to-G and C-to-A conversions resulted mainly from the repair of AP sites created by Ung and required Polζ as an extender. Rev1 is the main TLS polymerase for specifically incorporating Cs on the opposite position of AP sites to cause the dominant C-to-G conversion, while Polδ incorporates Ts or As on the opposite of AP sites, resulting in C-to-A and C-to-T conversions. Polη is not involved in the repair of AP sites caused by the base editor. Furthermore, our data suggested that the indels of base editing are mainly caused by the breakage of AP sites. Different from the current hypothesis model of the base editing mechanism, this work first elucidates the key roles of TLS polymerases in the cytosine base editing process. This work also suggests a new direction for the development of genomic and base editing techniques by employing, manipulating, and engineering TLS polymerases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    0
    Citations
    NaN
    KQI
    []