Gate-Voltage-Controlled Threading DNA into Transistor Nanopores

2017 
We present a simple method for DNA translocation driven by applying AC voltages, such as square and sawtooth waves, on an embedded thin film as a gate electrode inside of a dielectric nanopore, without applying a conventional bias voltage externally across the pore membrane. Square waveforms on a gate can drive a single DNA molecule into a nanopore, which often returns from the pore, causing an oscillation across the membrane. An optimized sawtooth-like negative voltage pulse on the gate can thread a fraction of a DNA molecule into a pore after a single pulse. This trapped DNA molecule continues to finish its translocation slowly through the pore. The DNA’s slow speed was comparable to previous findings of the escaping DNA speed from a nanopore estimated by the Smoluchowski equation with excluded-volume interactions of a long-chain molecule and electrophoresis by extremely low electric fields. This simple scheme, controlling DNA molecules only by gate potential modulation at a nanopore, will provide an ad...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    4
    Citations
    NaN
    KQI
    []