Structural and Biochemical Analyses Reveal the Mechanism of Glutathione S-Transferase Pi 1 Inhibition by the Anti-cancer Compound Piperlongumine

2017 
Abstract Glutathione S-transferase pi 1 (GSTP1), is frequently overexpressed in cancerous tumors and is a putative target of the plant compound piperlongumine (PL), which contains two reactive olefins and inhibits proliferation in cancer cells but not normal cells. PL exposure of cancer cells results in increased reactive oxygen species and decreased glutathione (GSH). This data in tandem with other information led to the conclusion that PL inhibits GSTP1, which forms covalent bonds between GSH and various electrophilic compounds, through covalent adduct formation at PLs C7-C8 olefin, while PLs C2-C3 olefin was postulated to react with GSH. However, direct evidence for this mechanism has been lacking. To investigate, we solved the x-ray crystal structure of GSTP1 bound to PL and GSH at 1.1 Angstrom resolution to rationalize previously reported structure activity relationship studies. Surprisingly, the structure showed a hydrolysis product of PL (hPL) was conjugated to glutathione at the C7-C8 olefin, and this complex was bound to the active site of GSTP1; No covalent bond formation between hPL and GSTP1 was observed. Mass spectrometric (MS) analysis of reactions between PL and GSTP1 confirmed that PL does not label GSTP1. Moreover, MS data also indicated that nucleophilic attack on PL at the C2-C3 olefin led to PL hydrolysis. Although hPL inhibits GSTP1 enzymatic activity in vitro, treatment of cells susceptible to PL with hPL did not have significant anti-proliferative effects, suggesting hPL is not membrane permeable. Altogether, our data suggest a model wherein PL is a prodrug whose intracellular hydrolysis initiates the formation of the hPL:GSH conjugate, which blocks the active site of and inhibits GSTP1 and thereby cancer cell proliferation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    46
    Citations
    NaN
    KQI
    []