Yakchi chert–volcanogenic Formation—fragment of the Jurassic accretionary prism in the Central Sikhote-Аlin, Russian Far East

2016 
The Yakchi chert–volcanogenic formation is differentiated at the base of the stratigraphic succession in the Khor-Tormasu subzone of the Central Sikhote-clin structural–formational zone or the Samarka terrane of the Jurassic accretionary prism. The paper considers the results of biostratigraphic study of its deposits and petrogeochemical studies of its basalts. A tectonically disrupted sequence of the Yakchi Formation is restored on the basis of fossil conodonts and radiolarians, and its Late cermian–Middle Jurassic age is determined. The authors interpret the resulting stratigraphic succession in terms of changing depositional settings on the moving oceanic plate and recognize events of the ocean history recorded in it. Chert accumulated on the oceanic plate in pelagic canthalassa/caleopacifica from the Late cermian through to the Middle Jurassic. Deposition of siliceous claystone in the Late cermian–Early Triassic reflects the decline in productivity of radiolarians and a long anoxic event in Panthalassa. Chert accumulation resumed in the Triassic and persisted in the Jurassic, and it was interrupted by the eruption of basalts of different nature. Formation of the Middle–Late Triassic oceanic intraplate basalts likely occurred on the thick and old oceanic lithosphere and that of the Jurassic basalts on the thin and newly created lithosphere. In the Middle Jurassic, chert accumulation was replaced by accumulation of tuffaceous siltstone at a subduction zone along the csian continental margin. The middle Bathonian–early Callovian age of this siltstone closely predates accretion of the Yakchi Formation. The materials of the upper layer of the oceanic plate that formed over 100 million years in different parts of the ocean and on the lithospheric fragments of different ages were accreted to the continental margin. The bulk of the accreted material consists of oceanic intraplate basalts, i.e., fragments of volcanic edifices on the oceanic floor. accretion of this western part of the Khor-Tormasu subzone occurred concurrently with accretion of the southeastern part of the Samarka subzone in Primorye, which clarifies the paleotectonic zonation of the Central Sikhote-Alin accretionary prism. The cataclastic gabbroids and granitoids, as well as the clastic rocks with shallow-marine fossils in the Khor-Tormasu subzone, are considered as possible analogues of the Okrainka-Sergeevka allochthonous complex.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    1
    Citations
    NaN
    KQI
    []