Physicochemical and antioxidant capacity analysis of colored sweet potato genotypes: in natura and thermally processed

2017 
Sweet potato (Ipomoea batatas (L.) Lam) is one of the most popular and ancient roots of Brazil and it can be consumed at different forms such as boiled, roasted or as sweets. Its cooking can lead to physicochemical transformations altering the nutritional properties. The objective of this study was to evaluate the physicochemical characteristics, bioactive compounds and antioxidant capacity of twelve sweet potato genotypes of varying pulp color in natura and roasted. Soluble solids, acidity, sugars, carotenoids, anthocyanins, phenolic compounds and antioxidant capacity were analyzed in the following sweet potatoes genotypes: cream pulp (Rubissol, Cuia, ILS03, ILS10, ILS12, ILS24 and ILS44); orange pulp (Amelia and Beauregard); and purple pulp (ILS56, ILS16 and ILS71). According to the results, it was observed a wide variation among the sweet potato genotypes for all analyzed parameters, in both preparation forms. The antioxidant capacity was a parameter with wide variation among genotypes, 210.29 to 7870.57µg trolox equivalent/g in in natura form and 673.26 to 17306.22µg trolox equivalent/g in roasted form. Soluble solids, acidity, sugars and bioactive compounds, with the exception of carotenoids, tended to be concentrated, also increases the total antioxidant capacity, in roasted sweet potatoes. In conclusion, genotype and the color of sweet potatoes were parameters that had an influence on its chemical composition. Cultivars such as Amelia and Beauregard stood out by the amounts of total soluble solids and carotenoids, respectively. The selections ILS 16 and ILS 56 are recommended as sources of anthocyanins. Thermal process influenced the concentration of antioxidant compounds and changed some physicochemical characteristics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    13
    Citations
    NaN
    KQI
    []