Principal Components of Multifrequency Microwave Land Surface Emissivities. Part I: Estimation under Clear and Precipitating Conditions

2014 
AbstractThe upcoming Global Precipitation Measurement mission will provide considerably more overland observations over complex terrain, high-elevation river basins, and cold surfaces, necessitating an improved assessment of the microwave land surface emissivity. Current passive microwave overland rainfall algorithms developed for the Tropical Rainfall Measuring Mission (TRMM) rely upon hydrometeor scattering-induced signatures at high-frequency (85 GHz) brightness temperatures (TBs) and are empirical in nature. A multiyear global database of microwave surface emissivities encompassing a wide range of surface conditions was retrieved from Advanced Microwave Scanning Radiometer for Earth Observing System (EOS; AMSR-E) radiometric clear scenes using companion A-Train [CloudSat, Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and Atmospheric Infrared Sounder (AIRS)] data. To account for the correlated emissivity structure, the procedure first derives the TRMM Microwave Imager–li...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    29
    Citations
    NaN
    KQI
    []