Aircraft Emission Inventory and Characteristics of the Airport Cluster in the Guangdong–Hong Kong–Macao Greater Bay Area, China

2020 
In this study, a compound method using modified Boeing Fuel Flow Method 2 (BFFM2) and an updated First Order Approximation V3.0 (FOA3.0) method deploying the ICAO Time-in-Mode (TIM) was used to produce a more reliable aircraft emission inventory for the Guangdong–Hong Kong–Macao Greater Bay Area (GBA). The results show that compared with the International Standard Atmosphere (ISA) conditions, the total emission of nitrogen oxides(NOx) decreased by 17.7%, while carbon monoxide(CO) and hydrocarbons(HC) emissions increased by 11.2%. We confirmed that taxiing is the phase in which an aircraft emits the most pollutants. These pollutant emissions will decrease by 0.3% to 3.9% if the taxiing time is reduced by 1 minute. Furthermore, the impact of reducing taxi-out time on emissions is more significant than that of reducing the taxi-in time. Taking the total aircraft emission factors as the main performance indicators, Hong Kong International Airport (VHHH) contributes the most to the total emissions of the GBA, while the Zhuhai airport(ZGSD) contributes the least. The contribution of an individual airport to the total emissions of the GBA is mainly determined by the proportion of Boeing B77L, B77W, and B744.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    3
    Citations
    NaN
    KQI
    []