Application of Toxicogenomic Technology for the Improvement of Risk Assessment

2008 
Recently, there has been scientific discussion on the utility of -omics techniques such as genomics, proteomics, and metabolomics within toxicological research and mechanism-based risk assessment. Toxicogenomics is a novel approach integrating the expression analysis of genes (genomic) or proteins (proteomic) with traditional toxicological methods. Since 1999, the toxicogenomic approach has been extensively applied for regulatory purposes in order to understand the potential toxic mechanisms that result from chemical compound exposures. Therefore, this article’s purpose was to consider the utility of toxicogenomic profiles for improved risk assessment, explore the current limitations in applying toxicogenomics to regulation, and finally, to rationalize possible avenues to resolve some of the major challenges. Based on many recent works, the significant impact toxicogenomic techniques would have on human health risk assessment is better identification of toxicity pathways or mode-of-actions (MOAs). In addition, the application of toxicogenomics in risk assessment and regulation has proven to be cost effective in terms of screening unknown toxicants prior to more extensive and costly experimental evaluation. However, to maximize the utility of these techniques in regulation, researchers and regulators must resolve many parallel challenges with regard to data collection, integration, and interpretation. Furthermore, standard guidance has to be prepared for researchers and assessors on the scientifically appropriate use of toxicogenomic profiles in risk assessment. The National Institute of Toxicological Research (NITR) looks forward to an ongoing role as leader in addressing the challenges associated with the scientifically sound use of toxicogenomics data in risk assessment.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    1
    Citations
    NaN
    KQI
    []