Parameterized generic Galois groups for q-difference equations, followed by the appendix "The Galois D-groupoid of a q-difference system" by Anne Granier

2012 
We introduce the parameterized generic Galois group of a q-difference module, that is a differential group in the sense of Kolchin. It is associated to the smallest differential tannakian category generated by the q-difference module, equipped with the forgetful functor. Our previous results on the Grothendieck conjecture for q-difference equations lead to an adelic description of the parameterized generic Galois group, in the spirit of the Grothendieck-Katz's conjecture on p-curvatures. Using this description, we show that the Malgrange-Granier D-groupoid of a nonlinear q-difference system coincides, in the linear case, with the parameterized generic Galois group introduced here. The paper is followed by an appendix by A. Granier, that provides a quick introduction to the D-groupoid of a non-linear q-difference equation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    13
    Citations
    NaN
    KQI
    []