Miniaturized Fabry–Perot probe utilizing PMPCF for high temperature measurement

2020 
We propose a miniaturized optical fiber Fabry–Perot probe for high temperature measurement (up to 1000°C). It is simply fabricated by fusion splicing a short section of polarization-maintaining photonic crystal fiber (PMPCF) with a single-mode fiber (SMF). The interface between the core of the SMF and air holes of the PMPCF, and the end face of the PMPCF work as the mirrors. The pure silica core of the PMPCF is employed as the sensing element. Experimental results show that the probe has a high thermal stability and the temperature sensitivity reaches up to 15.34 pm/°C, which is not affected by the length of the PMPCF. The linearity of temperature response is as high as 99.83%. The proposed sensor has promising prospects in practical applications due to simple fabrication process, low cost, compact size, and excellent repeatability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    5
    Citations
    NaN
    KQI
    []