Enhanced Pb and Zn stabilization in municipal solid waste incineration fly ash using waste fishbone hydroxyapatite.

2020 
Abstract The present research focused on evaluating the role of waste fishbone hydroxyapatite (FB-HAP) in stabilizing heavy metals, particularly Pb and Zn, in incineration fly ash (IFA). Bones were collected from various fish species and processed for batch experiments. A commercial apatite product (Apatite II™) was also obtained for a comparative analysis. The experiments were performed at fishbone/fly ash ratios of 0.0 (control group) and 1:10 (by weight), settling times of 6, 12, 24, and 672 h (28 days), and W/S ratios of 1.0 and 1.5 mL/g. The highest Pb removal efficiency reached 86.39% at 28 days settling periods, when the FB-HAP dose was only 10% at W/S 1.5 mL/g. FB-HAP was found noticeably more effective (approximately 1.5 to 2 times) than Apatite II™, particularly at shorter settling periods. Stabilization of Zn was efficient at longer settling period (28 days) using FB-HAP. The highest stabilization rate of Zn was 62.67% at W/S 1.0 mL/g. The results indicated that settling time and W/S ratio were the most important factors to enhance the stabilization of Pb and Zn in IFA. Utilization of waste fishbone is expected to be a low-cost and eco-friendly technology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    3
    Citations
    NaN
    KQI
    []