Full band quantum transport modelling with EP and NEGF methods; application to nanowire transistors

2019 
The active region of many modern electron devices consists of semiconductors structured at truly nanometric dimensions, either as ultra-thin-body FETs (UTRFETs), or as 3D architectures such as Fin-FETs, multi-gate FETs (MuGFETs), and nanowire (NW) FETs [1]. Quantum mechanical effects have thus become prominent not only in terms of subband splitting [2], but also in terms of source-drain tunnnelling in CMOS FEFs [3], [4], [5], and band-to-band-tunnnelling (BTBT) in Tunnel FETs (TFETs) [6], [7]. The relevance of quantum effects in nanoscale FETs is also witnessed by the fact hat CMOS based quantum dots have been proposed as a platform for quantum computing [8].
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    1
    Citations
    NaN
    KQI
    []