Advances in Management of Poultry Production Using Biotelemetry

2011 
In this chapter, the authors review recent developments in the use of biotelemetry in poultry production. The chapter begins with an overview of advancements in biotelemetry and outlines the types of equipment that are commercially available as well as those adapted and developed by researchers primarily for use in farm animals. The authors then highlight the significant milestones achieved by the scientific community in using biotelemetry towards a more holistic poultry production guided by birds’ physiological responses to environmental stressors. In particular, the authors discuss efforts at the University of Georgia towards building the next generation closed-loop poultry environmental controller which responds directly and in real-time to physiological needs of the birds. Biotelemetry is defined as the remote detection and measurement of physiological, bioelectrical, and behavioral variables to monitor function, activity, or condition of conscious unrestrained humans or animals. This encompasses a broad range of techniques of varying invasiveness including video monitoring, non-contact thermometry, radio tracking and the use of internally or externally mounted remote sampling systems (Morton et al., 2003). Biotelemetry is not a new concept and it was first introduced by Einthoven in 1903 when he measured the electrocardiogram using immersion electrodes remotely connected to a galvanometer via telephone lines (Cromwell et al., 1973, as cited in Hamrita et al., 1998). In later years, NASA played a big role in the advancement of biotelemetry by using it to transmit astronaut biomedical data such as heart rate and body temperature to earth. In (N. F. Guler & Ubeyli, 2002), the authors provide a detailed history of early uses and developments of biotelemetry. Biotelemetry consists of sensing the variable of interest from the animal using miniature sensors or transducers. These can be placed on the animal, ingested by the animal, or implanted inside the animal by means of injection or surgery. The output of the sensor or transducer is modulated to a form which can be transmitted wirelessly over a distance from the animal to a receiver using an embedded transmitter. The received signal is demodulated and the measured variable extracted through proper signal conditioning and calibration by the data acquisition system. Biotelemetry data has been transmitted through every medium including air, vacuum, water, and biologic tissue using a variety of modulating carriers such as electromagnetic waves (especially at radiofrequencyhence the name radiotelemetry), light, and ultrasound (N. F. Guler & Ubeyli, 2002). By far the most common carriers of biotelemetry data are radio waves. Due to the proliferation of biotelemetry in recent years, the Federal
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    3
    Citations
    NaN
    KQI
    []