Threshold factorization of the Drell-Yan process at next-to-leading power

2019 
We present a factorization theorem valid near the kinematic threshold $z=Q^2/\hat{s}\to 1$ of the partonic Drell-Yan process $q\bar q\to\gamma^*+X$ for general subleading powers in the $(1-z)$ expansion. We then consider the specific case of next-to-leading power. We discuss the emergence of collinear functions, which are a key ingredient to factorization starting at next-to-leading power. We calculate the relevant collinear functions at $\mathcal{O}(\alpha_s)$ by employing an operator matching equation and we compare our results to the expansion-by-regions computation up to the next-to-next-to-leading order, finding agreement. Factorization holds only before the dimensional regulator is removed, due to a divergent convolution when the collinear and soft functions are first expanded around $d=4$ before the convolution is performed. This demonstrates an issue for threshold resummation beyond the leading-logarithmic accuracy at next-to-leading power.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    21
    Citations
    NaN
    KQI
    []