Thermoluminescence of kunzite: A study of kinetic processes and dosimetry characteristics

2016 
Abstract Since the use of natural minerals for dating and dose reconstruction using luminescence techniques is well-established and always of interest, we present thermoluminescence characteristics of kunzite, a gem variety of spodumene. The chemical composition of the sample was determined using an Electron Probe MicroAnalyzer to be (Li 0.996 Na 0.009 Mn 0.006 ) ∑ = 1.016 (Al 0.981 Cr 0.003 Fe 2+ 0.001 ) ∑ = 0.995 [(Si 1.993 Al 0.008 ) ∑ = 2.000 O 6 ]. Thermoluminescence glow curves measured at 0.5 K/s after laboratory irradiation consist of three prominent peaks at 338 K (labelled as peak I), 454 K (peak II) and 681 K (peak III). The dose response of these three peaks is linear in the range 20–308 Gy studied. The position of each of the peaks is independent of dose, an archetypical feature of first order behaviour. However, detailed kinetic analyses showed that in fact, the peaks are not subject to first order kinetics. Each of the three peaks is affected by thermal quenching with an associated activation energy of thermal quenching estimated to be 0.70, 1.35 and 0.54 eV for peaks I, II and III respectively. In terms of dosimetry use, only peak III was found to be reliable for possible use in luminescence dating and dose reconstruction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    5
    Citations
    NaN
    KQI
    []