4-Bromodiphenyl ether delays pubertal Leydig cell development in rats

2018 
Abstract Polybrominated diphenyl ethers are a class of brominated flame retardants that are potential endocrine disruptors. 4-Bromodiphenyl ether (BDE-3) is the most abundant photodegradation product of higher polybrominated diphenyl ethers. However, whether BDE-3 affects Leydig cell development during puberty is still unknown. The objective of this study was to explore effects of BDE-3 on the pubertal development of rat Leydig cells. Male Sprague Dawley rats (35 days of age) were gavaged daily with BDE-3 (0, 50, 100, and 200 mg/kg body weight/day) for 21 days. BDE-3 decreased serum testosterone levels (1.099 ± 0.412 ng/ml at a dose of 200 mg/kg BDE-3 when compared to the control level (2.402 ± 0.184 ng/ml, mean ± S.E.). BDE-3 decreased Leydig cell size and cytoplasmic size at a dose of 200 mg/kg, decreased Lhcgr , Star , Dhh , and Sox9 mRNA levels at ≥ 100 mg/kg and Scarb1 , Cyp11a1 , Hsd17b3 , and Fshr at 200 mg/kg. BED-3 also decreased the phosphorylation of AKT1, AKT2, ERK1/2, and AMPK at 100 or 200 mg/kg. BDE-3 in vitro induced ROS generation, inhibited androgen production, down-regulated Lhcgr , Scarb1 , Star , Cyp11a1 , Hsd3b1 , Srd5a1 , and Akr1c14 expression in immature Leydig cells after 24-h treatment. In conclusion, the current study indicates that BDE-3 disrupts Leydig cell development via suppressing AKT, ERK1/2, and AMPK phosphorylation and inducing ROS generation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    16
    Citations
    NaN
    KQI
    []