Novel one step transformation method for Escherichia coli and Staphylococcus aureus using arginine-glucose functionalized hydroxyapatite nanoparticles

2019 
Abstract Bacterial gene transformation is one of the important techniques in molecular biology which has significant applications in gene cloning technology. In this study, we have developed arginine-glucose functionalized hydroxyapatite nanoparticle (R-G-HAp NPs) mediated novel one step transformation method, effective for both Gram-positive and Gram-negative bacteria. R-G-HAp NPs served as carriers to deliver pDNA into Escherichia coli and Staphylococcus aureus at room temperature, without the need for preparation of competent cells. High transformation efficiency was achieved in Gram-positive, S. aureus (10 7  cfu/μg of pDNA) as well as Gram-negative, E. coli (10 9  cfu/μg of pDNA). This demonstrates the efficacy of R-G-HAp NPs as a nano-vehicle to achieve high plasmid transformation efficiency, even in Gram-positive bacteria which is usually a challenge, exhibiting their potential as promising synthetic non-viral vectors for efficient bacterial gene transformation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    8
    Citations
    NaN
    KQI
    []