Selective bond formation triggered by short optical pulses: Quantum dynamics of a four-center ring closure

2020 
We report bond formation induced by an ultrashort UV pulse. The photochemical process is described by quantum dynamics as a coherent electronic and nuclear motions during the ultrashort pulse induced ring closure of norbornadiene to quadricyclane. Norbornadiene consists of two ethylene moieties connected by a rigid (CH2)3 bridge. Upon photoexcitation, two new sigma bonds are formed, resulting in the closure of a four-atom ring. As a medium-sized polyatomic molecule, norbornadiene exhibits a high density of strongly coupled electronic states from about 6 eV above the ground state. We report on inducing the formation of the new bonds using a short femtosecond UV pulse to pump a non-equilibrium electronic density in the open form that evolves towards the closed ring form. As the coherent electronic-nuclear coupled dynamics unfold, the excited states change character through non-adiabatic interactions and become valence states for the two new C-C bonds of quadricyclane. Our three-dimensional fully quantum dynamical grid simulations during the first 200 fs show that short UV pulses of different polarization initiate markedly different initial non-equilibrium electronic densities that follow different dynamical paths to the S0/S1 conical intersection. They lead to different initial relative yields of quadricyclane, thereby opening the way to controlling bond-making with attopulses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    7
    Citations
    NaN
    KQI
    []