Morphological and compositional analysis of electrodeposited indium (III) sulfide (In 2 S 3 ) films

2014 
In the last few years, notable progress in understanding the growth mechanism of thin solar films deposited by numerous techniques have been made. Electrodeposition continues to be a complex deposition technique that can lead to low-quality material regions (crack) in the semiconductor material. Such cracks form porous zones on the substrate and diminish the heterojunction interface quality of a photovoltaic (PV) cell. In this paper, electrodeposition of In 2 S 3 films was systematically and quantitatively investigated by varying the electrodeposition parameters including bath composition, current density, deposition time, and deposition temperature. Their effects upon the film growth mechanism, composition, and morphology were studied with the help of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and fracture and buckling software (digital image analysis). In addition, the effect of different glass-substrates (Mo, ITO, and FTO) and annealing treatments upon the performance of the electrodeposited In 2 S 3 film was analyzed. Furthermore, the Taguchi Method was used to determine the optimal electrodeposition parameters and study their influence upon the morphological and compositional properties of In 2 S 3 films.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    1
    Citations
    NaN
    KQI
    []