A 4 × 4 cm2 Nano-Engineered Solid Oxide Electrolysis Cell for Efficient and Durable Hydrogen Production

2019 
Despite various advantages of high-temperature solid oxide electrolysis cells (SOECs) over their low-temperature competitors, the insufficient long-term durability has prevented the commercialization of SOECs. Here, we address this challenge by employing two nanoengineered electrodes. The O2 electrode consists of a La0.6Sr0.4CoO3−δ (LSC) and Gd,Pr-co-doped CeO2 (CGPO) nanocomposite coating deposited on a Gd-doped CeO2 (CGO) scaffold, and the H2 electrode comprises a Ni/yttria stabilized zirconia (YSZ) electrode modified with a nanogranular CGO coating. The resulting cell with an active area of 4 × 4 cm2 exhibits a current density exceeding 1.2 A cm–2 at 1.3 V and 750 °C for steam electrolysis while also offering excellent long-term durability at 1 A cm–2 with a high steam-to-hydrogen conversion of ∼56%. We further unravel the degradation mechanism of the most commonly used Ni/YSZ electrode under these conditions and describe the mitigation of the discussed mechanism on our nanoengineered electrode. Our fi...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    31
    Citations
    NaN
    KQI
    []