TRAIL and doxorubicin combination enhances anti-glioblastoma effect based on passive tumor targeting of liposomes

2011 
Abstract Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a novel anticancer agent for glioblastoma multiforme (GBM). Some GBM cell lines, however, are relatively resistant to TRAIL. Doxorubicin (DOX) can sensitize GBM cells to TRAIL-induced apoptosis, indicating that the combination of DOX and TRAIL may be an effective strategy to kill TRAIL-resistant GBM cells. However, the therapeutic effect is limited by the short serum half-life of TRAIL, chronic cardiac toxicity of DOX, multidrug resistance (MDR) property of GBM cells and poor drug delivery across the blood-brain barrier (BBB). To solve such problems, combination treatment of TRAIL liposomes (TRAIL-LP) and DOX liposomes (DOX-LP) were developed for the first time. The in vitro cytotoxicity study indicated that DOX-LP sensitized GBM cell line U87MG but not normal bovine caruncular epithelial cells (BCECs) to TRAIL-LP-induced apoptosis, demonstrating the safety of the combination treatment. This sensitization was accompanied by up-regulation of death receptor 5 (DR5) expression and caspase activation. Furthermore, the combination therapy of TRAIL-LP and DOX-LP displayed stronger anti-GBM effect than free drugs or liposomal drugs alone in vivo . In summary, the combination treatment reported here showed improved therapeutic effect on GBM. Therefore, it has good potential to become a new therapeutic approach for patients with GBM.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    62
    Citations
    NaN
    KQI
    []