Tissue-Specificity of Dystrophin–Actin Interactions: Isoform-Specific Thermodynamic Stability and Actin-Binding Function of Tandem Calponin-Homology Domains
2020
Genetic mutations in Duchenne muscular dystrophy (DMD) gene affecting the expression of dystrophin protein lead to a number of muscle disorders collectively called dystrophinopathies. In addition to muscle dystrophin, mutations in brain-specific dystrophin isoforms, in particular those that are expressed in the brain cortex and Purkinje neurons, result in cognitive impairment associated with DMD. These isoforms carry minor variations in the flanking region of the N-terminal actin-binding domain (ABD1) of dystrophin, which is composed of two calponin-homology (CH) domains in tandem. Determining the effect of these sequence variations is critical for understanding the mechanisms that govern varied symptoms of the disease. We studied the impact of differences in the N-terminal flanking region on the structure and function of dystrophin tandem CH domain isoforms. The amino acid changes did not affect the global structure of the protein but drastically affected the thermodynamic stability, with the muscle isof...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
58
References
2
Citations
NaN
KQI