Effect of surge motion on rotor aerodynamics and wake characteristics of a floating horizontal-axis wind turbine

2021 
ABSTRACT Aerodynamics of a floating horizontal-axis wind turbine (FHAWT) is subject to its platform’s six degrees of freedom (DOFs) motion, especially the surge motion, and may become much more complicated than that of a fixed-base wind turbine. This paper aims at investigating the aerodynamics of the FHAWT’s rotor and the characteristics of its wake under surge motion. To explore this, a CFD method with the improved delayed detached eddy simulation (IDDES) is applied to a 1:50 model FHAWT. First, it is demonstrated that the rotor’s aerodynamics including the thrust, torque and rotor power may be greatly affected by surge motion even though it is small. During surge motion, the light dynamic stall and rotor-wake interaction phenomena are observed. In addition, the near and far wake may be obviously influenced by surge motion. More importantly, the wake-recovery process under surge motion is slower than that without surge motion. In general, the surge motion impacts the aerodynamics of the FHAWTs’ rotor and the characteristics of its wake greatly, therefore should receive due attention in the design progress and the arrangement of wind farms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    4
    Citations
    NaN
    KQI
    []