The oncometabolite R-2-hydroxyglutarate dysregulates the differentiation of human mesenchymal stromal cells via inducing DNA hypermethylation.

2021 
BACKGROUND Isocitrate dehydrogenase (IDH1/2) gene mutations are the most frequently observed mutations in cartilaginous tumors. The mutant IDH causes elevation in the levels of R-enantiomer of 2-hydroxylglutarate (R-2HG). Mesenchymal stromal cells (MSCs) are reasonable precursor cell candidates of cartilaginous tumors. This study aimed to investigate the effect of oncometabolite R-2HG on MSCs. METHODS Human bone marrow MSCs treated with or without R-2HG at concentrations 0.1 to 1.5 mM were used for experiments. Cell Counting Kit-8 was used to detect the proliferation of MSCs. To determine the effects of R-2HG on MSC differentiation, cells were cultured in osteogenic, chondrogenic and adipogenic medium. Specific staining approaches were performed and differentiation-related genes were quantified. Furthermore, DNA methylation status was explored by Illumina array-based arrays. Real-time PCR was applied to examine the signaling component mRNAs involved in. RESULTS R-2HG showed no influence on the proliferation of human MSCs. R-2HG blocked osteogenic differentiation, whereas promoted adipogenic differentiation of MSCs in a dose-dependent manner. R-2HG inhibited chondrogenic differentiation of MSCs, but increased the expression of genes related to chondrocyte hypertrophy in a lower concentration (1.0 mM). Moreover, R-2HG induced a pronounced DNA hypermethylation state of MSC. R-2HG also improved promotor methylation of lineage-specific genes during osteogenic and chondrogenic differentiation. In addition, R-2HG induced hypermethylation and decreased the mRNA levels of SHH, GLI1and GLI2, indicating Sonic Hedgehog (Shh) signaling inhibition. CONCLUSIONS The oncometabolite R-2HG dysregulated the chondrogenic and osteogenic differentiation of MSCs possibly via induction of DNA hypermethylation, improving the role of R-2HG in cartilaginous tumor development.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    1
    Citations
    NaN
    KQI
    []