Measurement of the ionization yield from nuclear recoils in liquid xenon between 0.3 -- 6 keV with single-ionization-electron sensitivity

2019 
Dual-phase xenon TPC detectors are a highly scalable and widely used technology to search for low-energy nuclear recoil signals from WIMP dark matter or coherent nuclear scattering of $\sim$MeV neutrinos. Such experiments expect to measure O(keV) ionization or scintillation signals from such sources. However, at $\sim1\,$keV and below, the signal calibrations in liquid xenon carry large uncertainties that directly impact the assumed sensitivity of existing and future experiments. In this work, we report a new measurement of the ionization yield of nuclear recoil signals in liquid xenon down to 0.3$\,$keV$\,\,$-- the lowest energy calibration reported to date -- at which energy the average event produces just 1.1~ionized~electrons. Between 2 and 6$\,$keV, our measurements agree with existing measurements, but significantly improve the precision. At lower energies, we observe a decreasing trend that deviates from simple extrapolations of existing data. We also study the dependence of ionization yield on the applied drift field in liquid xenon between 220V/cm and 6240V/cm, allowing these measurements to apply to a broad range of current and proposed experiments with different operating parameters.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    9
    Citations
    NaN
    KQI
    []