Thermal stress as the major factor of defect generation in SiC during PVT growth

2002 
Numerical simulations of the thermal stress distribution in a SiC boule 2” in diameter and 1” long grown by conventional PVT technique were performed based on the temperature field distribution in a resistively heated growth reactor that was simulated using the GAMBIT-2.0.4/FIDAP-8.6.2 software package. Analysis of the simulation results revealed the existence of a thermal stress, which was excessively nonuniform in distribution and whose magnitude exceeded the value of the critical resolved shear stress of 1.0 MPa by a factor of 2. The high stress initiated plastic deformation and the high temperature provoked the intense self-diffusion processes. The combination of these factors alters the mechanism of plastic deformation, significantly affecting the structural quality of the growing crystal. The influence of self-diffusion processes initiating the formation of interstitial atoms and vacancies; stacking fault formation as a result of the nonconservative motion of the basal plane dislocations; and micropipe formation from the dislocation groups piled up at silicon and carbon second phase inclusions are also discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    5
    Citations
    NaN
    KQI
    []