On the biomechanical role of glycosaminoglycans in the aortic heart valve leaflet

2013 
Abstract While the role of collagen and elastin fibrous components in heart valve valvular biomechanics has been extensively investigated, the biomechanical role of the glycosaminoglycan (GAG) gelatinous-like material phase remains unclear. In the present study, we investigated the biomechanical role of GAGs in porcine aortic valve (AV) leaflets under tension utilizing enzymatic removal. Tissue specimens were removed from the belly region of porcine AVs and subsequently treated with either an enzyme solution for GAG removal or a control (buffer with no enzyme) solution. A dual stress level test methodology was used to determine the effects at low and high (physiological) stress levels. In addition, planar biaxial tests were conducted both on-axis (i.e. aligned to the circumferential and radial axes) and at 45° off-axis to induce maximum shear, to explore the effects of augmented fiber rotations on the fiber–fiber interactions. Changes in hysteresis were used as the primary metric of GAG functional assessment. A simulation of the low-force experimental setup was also conducted to clarify the internal stress system and provide viscoelastic model parameters for this loading range. Results indicated that under planar tension the removal of GAGs had no measureable affect extensional mechanical properties (either on- or 45° off-axis), including peak stretch, hysteresis and creep. Interestingly, in the low-force range, hysteresis was markedly reduced, from 35.96 ± 2.65% in control group to 25.00 ± 1.64% ( p
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    52
    Citations
    NaN
    KQI
    []