Def1 and Dst1 play distinct roles in repair of AP lesions in highly transcribed genomic regions
2017
Abstract Abasic or AP sites generated by spontaneous DNA damage accumulate at a higher rate in actively transcribed regions of the genome in S. cerevisiae and are primarily repaired by base excision repair (BER) pathway. We have demonstrated that transcription-coupled nucleotide excision repair (NER) pathway can functionally replace BER to repair those AP sites located on the transcribed strand much like the strand specific repair of UV-induced pyrimidine dimers. Previous reports indicate that Rad26, a yeast homolog of transcription-repair coupling factor CSB, partly mediates strand-specific repair of UV-dimers as well as AP lesions. Here, we report that Def1, known to promote ubiquitination and degradation of stalled RNA polymerase complex, also directs NER to AP lesions on the transcribed strand of an actively transcribed gene but that its function is dependent on metabolic state of the yeast cells. We additionally show that Dst1, a homolog of mammalian transcription elongation factor TFIIS, interferes with NER-dependent repair of AP lesions while suppressing homologous recombination pathway. Overall, Def1 and Dst1 mediate very different outcomes in response to AP-induced transcription arrest.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
50
References
10
Citations
NaN
KQI