Biofunctionalization of microgroove titanium surfaces with an antimicrobial peptide to enhance their bactericidal activity and cytocompatibility.

2015 
Abstract A firm peri-implant soft tissue seal is important for the long-term survival of dental implants, which demands the properties of antibacterial and cytocompatibility of the implant surfaces. In this study, GL13K, a cationic antimicrobial peptide, was immobilized onto microgroove surfaces which were 60 μm in width and 10 μm in depth, and the modified surfaces improved both the properties of antibacterial and cytocompatibility. The method of silanization was used to immobilize the antimicrobial peptide GL13K, which was confirmed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), water contact angle measurement. Then the mechanical stability of the coatings was confirmed by ultrasonication. In vitro antibacterial tests confirmed bactericidal activity against Porphyromonas gingivalis without inhibiting its adhesion. In vitro cytocompatibility tests also confirmed that adhesion at later phase and proliferation of HGFs were greater ( P
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    44
    Citations
    NaN
    KQI
    []