High-resolution radioactive beam study of the $$^{26}\hbox {Al}(d,p$$26Al(d,p ) reaction and measurements of single-particle spectroscopic factors

2020 
We present a detailed comparison of shell model calculations with inverse kinematic transfer reaction data, obtained using a radioactive beam. Experimentally extracted spectroscopic factors from the $$^{26}\hbox {Al}(d,p)^{27}\hbox {Al}$$ reaction for both even and odd parity states are found to be exceptionally well reproduced by the shell model and a high level of consistency is observed between bound isobaric analog states in $$^{27}\hbox {Al}$$ and $$^{27}\hbox {Si}$$, populated via (d, p) and (d, n) transfer, respectively. Furthermore, an evaluation of key resonances in the astrophysical $$^{26}\hbox {Al}(p,\gamma )^{27}\hbox {Si}$$ reaction indicates that shell model calculations provide relatively accurate predictions for the existence of strong resonances and mirror nucleus comparisons appear to hold exceptionally well for proton-unbound levels. Consequently, we expect that the utilization of both techniques will likely be a very effective tool in the investigation of stellar processes outside the current reach of experiment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    5
    Citations
    NaN
    KQI
    []