A Novel Orally Active Small Molecule Potently Induces G1 Arrest in Primary Myeloma Cells and Prevents Tumor Growth by Specific Inhibition of Cdk4/6.

2006 
Cell cycle deregulation is central to the initiation and fatality of multiple myeloma, the second most common hematopoietic cancer, although impaired apoptosis plays a critical role in the accumulation of myeloma cells in the bone marrow (BM). Inhibition of Cdk4 and Cdk6 by the Cdk inhibitor, p18(INK4c), is required for the generation of normal, functional plasma cells 1 . The mechanism for intermittent, unrestrained proliferation of myeloma cells is unknown, but mutually exclusive activation of Cdk4-cyclin D1 or Cdk6-cyclin D2 precedes proliferation of BM myeloma cells in vivo 2 . These data identify Cdk4 and Cdk6 as key determinants in the loss of cell cycle control in myeloma and suggest that Cdk4/6 may be effective targets for therapeutic intervention. Here we show that by specific inhibition of Cdk4/6, the orally active small molecule PD 0332991 potently induces G1 arrest in primary BM myeloma cells ex vivo , and prevents tumor growth in disseminated human myeloma xenografts. PD 0332991 inhibits Cdk4/6 proportional to the cycling status of the cells independent of cellular transformation, and acts in concert with the physiologic Cdk4/6 inhibitor p18(INK4c). Inhibition of Cdk4/6 by PD 0332991 is not accompanied by induction of apoptosis. However, when used in combination with a second agent such as dexamethasone, PD 0332991 markedly enhances the killing of myeloma cells by dexamethasone. PD 0332991, therefore, represents the first promising and specific inhibitor for therapeutic targeting of Cdk4/6 in multiple myeloma and possibly other B cell cancers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    6
    Citations
    NaN
    KQI
    []