Nondestructive evaluation of as-implanted and annealed ultra shallow junctions by photothermal and photoluminescence heterodyne techniques

2005 
Abstract The control of implantation dose, ion energy and the junction depth after annealing are key points of the on-line metrology for ultra shallow junction fabrication. Nondestructive and non-contact optical methods are examined with respect to their applicability for related tasks. High sensitive low noise photothermal heterodyne (PTH) and photoluminescence heterodyne (PLH) techniques are applied to control implant parameters of 0.5 keV B + – implants both immediately after implantation and after spike annealing. The photothermal response shows that beside dose and energy dependencies monitored after implantation the spike annealing results in a layer with reduced carrier lifetime and mobility. By photoluminescence response the existence of an impurity band and the correlation with the p–n-junction depth is demonstrated by measuring the response of carrier dynamics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    1
    Citations
    NaN
    KQI
    []