Metabolomics Reveals Anaerobic Bacterial Fermentation and Hypoxanthine Accumulation for Fibrinous Pleural Effusions in Children with Pneumonia

2019 
Fibrin formation in infectious parapneumonic effusion (IPE) characterizes complicated parapneumonic effusion and is important for providing guidelines for the management of IPEs that require aggressive interventions. We aim to identify metabolic mechanisms associated with bacterial invasion, inflammatory cytokines, and biochemical markers in cases of fibrinous infectious pleural effusions in children with pneumonia. Pleural fluid metabolites were determined by 1H nuclear magnetic resonance spectroscopy. Metabolites that contributed to the separation between fibrinous and nonfibrinous IPEs were identified using supervised partial least squares discriminant analysis (Q2/R2 = 0.84; Ppermutation < 0.01). IL-1β in the inflammatory cytokines and glucose in the biochemical markers were significantly correlated with 11 and 9 pleural fluid metabolites, respectively, and exhibited significant overlaps. Four metabolites, including glucose, lactic acid, 3-hydroxybutyric acid, and hypoxanthine, were significantly corr...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    2
    Citations
    NaN
    KQI
    []